
Playing Othello By Deep Learning Neural Network

Playing Othello By Deep Learning Neural Network

Ng Argens

The University of Hong Kong

Author Note

Argens Ng, BEng (Comp. Sc.), The University of Hong Kong (UID.: 3035072143)

This paper was prepared in partial fulfillment of the Final Year Project (COMP 4801)

required by the curriculum of Bachelor of Engineering (Computer Science)

Playing Othello By Deep Learning Neural Network 2

Table of Contents

Abstract .. 8

Acknowledgement ... 9

Playing Othello By Deep Learning Neural Network ... 10

Previous Work – AlphaGo ... 11

Overall Structure ... 11

Artificial Neural Network ... 12

Value Network. ... 12

Policy Network. .. 12

Rollout Policy. ... 12

Training Algorithm ... 13

Supervised Learning. .. 13

Reinforcement Learning. .. 13

Tree Search ... 13

Monte Carlo Tree Search. ... 13

Literature Review – Strategy Guide for Reversi & Reversed Reversi 14

Positional Strategy .. 14

Liberty / Freedom ... 15

Stable Discs ... 16

Frontier .. 16

Playing Othello By Deep Learning Neural Network 3

Literature Review – Writing an Othello Program6 ... 17

Othello Specific .. 17

Disc-Square Tables. .. 17

Mobility-Based Evaluation. .. 17

Pattern-Based Evaluation. ... 17

General Game Tree ... 18

Alpha-Beta Pruning. ... 18

Move Ordering. ... 18

Architecture ... 19

Raw Data Extraction ... 19

decoder.py ... 19

RawToStates.py. .. 20

Neural Network ... 20

Feature Extraction. .. 20

Training. .. 20

Testing. .. 20

Prediction. ... 21

Game Rule Enforcement ... 21

othello.py .. 21

Core Program .. 22

Playing Othello By Deep Learning Neural Network 4

Neural Network ... 23

Library ... 23

Feature Extraction ... 23

Raw Board Position. ... 23

Border. ... 24

Rotation. .. 24

Corner. ... 25

Liberty. .. 25

Training and Testing ... 26

Early Stopping. ... 26

Hyper-parameter Tuning. .. 26

Testing. .. 27

Graphical User Interface .. 28

Core Functionality .. 28

Mouse Position. .. 28

Disc and Grid Representation. .. 28

Immediate Feedback ... 28

Hover Position. ... 28

Move Validity. ... 29

Available Moves. .. 30

Playing Othello By Deep Learning Neural Network 5

Game Tree Expansion ... 31

Core Concept .. 31

Alpha-Beta Pruning. ... 31

Move Ordering. ... 31

Minimax. ... 31

Repeating Player. .. 31

Implementation ... 32

Tree. .. 32

Node. ... 32

Multi-threading ... 33

Bottom-Up Approach .. 33

Leaf. .. 33

Inner Nodes. .. 33

Root. .. 33

Operations Beside Expansion ... 34

Next Node. .. 34

Lock. ... 35

Pruning .. 35

Experiments and Results .. 36

Border Only .. 36

Playing Othello By Deep Learning Neural Network 6

Border and Corner ... 38

Border, Corner and Freemove ... 39

Justification and Explanation .. 41

Why is Othello a suitable game? .. 41

Why is policy network not used? .. 41

Why is Python being used? ... 41

Why is reinforcement learning not being used? ... 42

Why are more complicated features not being used? ... 42

Conclusion and Future Work ... 44

Architecture ... 44

Neural Network ... 44

Feature Extraction. .. 45

Reinforcement Learning. .. 45

Policy Network. .. 45

User Experience .. 45

Tree Traversal ... 45

References .. 46

Neural Network Structure ... 47

Table 1 .. 48

Table 2 .. 49

Playing Othello By Deep Learning Neural Network 7

Table 3 .. 50

Table 4 .. 51

Playing Othello By Deep Learning Neural Network 8

Abstract

Computer Go has always been considered a major hurdle for Artificial Intelligence development1 due to

its enormous number of possible moves and hence large degree of freedom. This hurdle was overcome in

October 2015 when AlphaGo became the first Computer Go program to beat a professional human Go

player without handicap on a full-sized 19x19 board. Our project aims to replicate the success of

AlphaGo in the game of Othello (a.k.a. Reversi). By using similar algorithms and components but with

smaller board size and degree of freedom, we hope to investigate the effect of neural network in

computer’s performance in playing games.

In the coming sections, we will describe the design of AlphaGo and how our program adopted various

strategies of it. We will also discuss the adaptations made to fit another game and different challenges

faced and overcome throughout the project. Lastly, we will showcase the experiments done and how the

data collected can expedite the development in future works.

Keywords: Othello, Computer Othello, Deep Learning, Neural Network

Playing Othello By Deep Learning Neural Network 9

Acknowledgement

I would like to express my greatest gratitude towards Dr. K. P. Chan, my mentor, who has supported and

guided me throughout the project. This project would not have such achievement without his support and

guidance. I would also like to thank the department of Computer Science for their generous support in

equipment and organization, Ray Kurzweil who has inspired me to pursue in the field of Artificial

Intelligence, and the selfless contribution of the Google DeepMind team in the development of AlphaGo.

Playing Othello By Deep Learning Neural Network 10

Playing Othello By Deep Learning Neural Network

This final report serves the purpose of concluding my Final Year Project named “Playing Othello By

Deep Learning Neural Network”. The project is conducted under the supervision of the Computer Science

Department of the University of Hong Kong and in particular, my mentor, Dr. K. P. Chan.

The main goal of my project is to investigate and mimic a highly successful Computer Go program called

AlphaGo, which is not only the first computer Go program to beat a professional human Go player

without handicaps, but also the number one “player” back on July 18th, 2016, according to Go Ratings, a

website which ranks Go players according to their Elo. Its most recent accomplishment was playing on

various Go websites against the best players in the world at the end of 2016, resulting in a final score of

60 wins out of 60 games.

For our game of choice, Othello is favored over Go as its simplicity would allow us to create an AlphaGo-

like program without having to use a supercomputer. Our game of choice would also be further discussed

in greater detail in the later part of Justification and Explanation.

In the end, while the mean squared error of our network was rather high, at around 0.71, our game still

managed to achieve over 70%-win rate against testers by only searching 4 to 5 moves ahead. This

indicates the high effectiveness of neural network, in particular, convolutional neural network, in games

like Othello. This will also be discussed in Justification and Explanation.

But first, let us study the architecture of AlphaGo.

Playing Othello By Deep Learning Neural Network 11

Previous Work – AlphaGo

Our project is inspired by AlphaGo and hence it will be discussed in details in the coming section.

AlphaGo is the best Computer Go program in the world and the first to defeat a human professional

player in a 5-game series. It was ranked number one in July 2016 by Go Ratings, a website dedicated to

ranking Go players, humans and computers alike2.

Figure 1. AlphaGo in July 2016 reached ranked one in terms of Elo on
Go Ratings in July, 2016

Overall Structure

The structure of AlphaGo was understood through the official paper published – Mastering the game of

go with deep neural networks and tree search3.
The main structure of AlphaGo is the Monte Carlo Tree Search (MCTS). It is accompanied by two deep

learning neural networks, namely the policy network and the value network. The former one is developed

for reducing branching factor, while the latter for reducing depth of search when necessary. While the

policy network is accurate, a fast rollout policy is developed for side-by-side comparison. To train the two

networks, supervised learning and reinforcement learning are used as standard machine learning

approaches.

Playing Othello By Deep Learning Neural Network 12

Artificial Neural Network

Artificial Neural Network (or simply, ANN or Neural Network) is believed by many to be the main

reason of the success of AlphaGo. Neural Network is a computational model, based on a large collection

of Artificial Neurons (or simply, Neurons) to remotely simulate the action in biological brains and neural

networks. It is considered superior than traditional artificial intelligence approach for two reasons. Firstly,

much less coding is needed when using ANN; And secondly, subtle rules or even rules unknown to

human can be captured by ANN. This makes it exceptionally good at image and voice recognition, and as

AlphaGo proved to us, in artificial intelligence and gaming as well.

Value Network. value network is analogous to heuristic functions used in traditional game tree

search. It provides a value for the current game state if the tree has to be truncated due to time constraint.

We can also imagine it as a human professional who can tell whether the dark or the white side is at an

advantage at first glance. At first, full game histories were provided to train the value network in a similar

manner to policy network. This led to overfitting and the machine actually “memorized” the training set.

The network was then trained with distinct states from different games played by itself and earlier

versions. The problem was then solved.

Policy Network. policy network was used to regulate the search width in AlphaGo. As Go is a

game with such a high degree of freedom, this becomes especially crucial for the program to have a

reasonable response time. For AlphaGo, 13-layer policy network was trained from 30 million positions

from the KGS Go Server. The network is provided game states and the next move by human expert and

would gradually learn to predict this move. The result was an accuracy of up to 57%, compared with a

maximum of 44.4% for other research groups at that time. However, it takes 3ms for computation, which

hence limits the traversed depth of the tree search.

Rollout Policy. Using a reduced set of feature, rollout policy can rapidly analyze known patterns

on the board for the most probable moves. This is also trained with 8 million positions from human games

on the Tygem server. The rollout policy achieved a 24.2% accuracy using only 2 µs (0.067 % of policy

Playing Othello By Deep Learning Neural Network 13

network). In the end, both rollout policy and policy network are used in a parallel manner, and both

results are taken into account.

Training Algorithm

Supervised Learning. Supervised learning is used whenever a program is asked to provide

answers to questions. It is supervised in the sense that both answers and questions are provided in the

training examples. The program can then predict answers from similar questions later on. It is thus

commonly used and was applied to all three of the policy network, rollout policy and value network.

 Reinforcement Learning. After AlphaGo has achieved a basic benchmark in performance, its

policy network underwent reinforcement learning and played games again and again with former versions

of itself, which can be the first or, for example, the 524th version. The program can then identify its

mistakes and update its network accordingly.

Tree Search

Tree search serves the foundation and backbone of AlphaGo, in a sense that it links every component and

actually makes it able to play games.

Monte Carlo Tree Search. Monte Carlo Tree Search (MCTS) is a general game tree search

without branching at all. Instead, each probe is conducted all the way to the end by moving randomly at

each state4. The rewards and visit count are then back propagated to better enhance the next probe4. This

continues until time runs out, which makes it ideal for playing under time constraint. However, as we can

easily tell, moving randomly does not match a rational player (or opponent) and thus policy network is

employed to better reflect reality. In the case AlphaGo, the matrix of play percentage returned by policy

network can be directly employed by MCTS to facilitate its searching.

Playing Othello By Deep Learning Neural Network 14

Literature Review – Strategy Guide for Reversi & Reversed

Reversi

Accessed from: http://www.samsoft.org.uk/reversi/strategy.htm [5]

To better adapt AlphaGo to the game of Othello (a.k.a. Reversi), I have looked into a wide array

of literature guide. This strategy guide in particular provided valuable insight as to how the strategies of

Othello differ form Go.

Positional Strategy

Similar to Go, corner and border discs have different meanings from those in the center. For one, corner

discs can never be flipped while border discs can only be flipped from one direction. This can be

observed from values assigned to various squares in the figure below.

Figure 2. An example of positional evaluation

Not only are corner squares extremely valuable, this scoring algorithm also reasonably punishes squares

which grants the opponent access to the corner square, such as B2 (X-square) or B1 and A2 (the C

Playing Othello By Deep Learning Neural Network 15

squares). It also shows the symmetry of every Othello game, where the first move by black is effectively

immaterial to how the game progresses.

Later on, this scoring algorithm also contributed to my first prototype and first performance benchmark. It

later evolved to contribute to the feature extraction of my program, discussed in (Architecture – Neural

Network – Feature Extraction).

Liberty / Freedom

Freedom (or liberty as named in my program) is a concept that applies to Othello but not Go (although the

same word is used). This is because in Go, players can virtually put their discs anywhere they want.

Whereas in Othello, moves available to each player depends highly on the opponents’ discs and moves.

This makes limiting opponents moves a high priority target in the early to mid-game.

Figure 3. An example of liberty. Black has only 3 moves in this case

For example, in the above figure, white has only 3 moves available (highlighted in X), with 2 of which

being highly averted X-squares (squares diagonal to corners). Black has then successfully limited the

choices white can make, and if it can continue to convert as little white discs as possible in the following

rounds, should be able to force white into making a terrible move.

Playing Othello By Deep Learning Neural Network 16

Stable Discs

Stable discs refer to discs that cannot be converted in subsequent moves. Intuitively, corner discs and

discs that are adjacent to them are stable discs. In the following figure (left), black has 23 stable discs

while white only has one. Hence black only needs 10 more stable discs to secure a win (33/64 possible

discs) and white’s apparently higher disc count at this moment would not be a factor of concern.

Figure 4. An example of stable discs

Figure 5. An example of the benefit of having a
small number of frontier

Frontier

From stable discs and mobility comes the concept of frontier. As each move must be played adjacent to

an opponent’s disc into an empty square, the discs which have empty neighboring square forms the

frontier while those that don’t have such neighboring squares are the interior discs. A simple method of

keeping opponent’s mobility low is thus to maintain a low number of frontier discs. For example, in the

above figure (right), A6 would be a better move in general. While it does flip 3 white discs, none of them

is a frontier disc and it is thus a quiet move. Whereas in the case of F7, although only one white disc is

converted, 2 frontier discs are created in the progress and thus granted the opponent more liberty in

subsequent moves

Playing Othello By Deep Learning Neural Network 17

Literature Review – Writing an Othello Program6

Accessed from: http://www.radagast.se/othello/

When writing an Othello program, there is no better way to start than learning from someone who

already did it. In 1998, Zebra was declared the third best Othello algorithm in the world and has since

then continued to develop until 2003. While the approaches adopted by G. Andersson in his Zebra

program and me in this project are way different, many principles have proven itself to be universal, some

in the world of computer gaming in general.

Othello Specific

Disc-Square Tables. This is in principle the same as the positional strategy covered in the

previous literature. Basically, corners are good, squares next to corners are bad and each side has a total

score calculated from whether or not one has his/her disc at that particular square. This strategy has been

disregarded by Andersson, who commented programs evaluated this way are invariably weak.

Mobility-Based Evaluation. This takes the principle of frontier discs and liberty into

consideration and is in generally stronger than using disc-square tables. By levitating into a more global

approach, this style of evaluation can be a strong candidate in contesting corners by limiting opponent’s

move and increasing one’s liberty.

Pattern-Based Evaluation. This is only vaguely described by Andersson but in essence it means

evaluating row-by-row, column-by-column and diagonal-by-diagonal while taking the global evaluation

into account. It also appears to involve breaking down a board into patterns such as crosses and

sandwiched straights. However as too little detail was provided, it barely contributed to my program.

Playing Othello By Deep Learning Neural Network 18

General Game Tree

Being a traditional artificial intelligence gaming program, Zebra had a lot of focus in efficient game tree

traversal, with its main point highlighted below.

Alpha-Beta Pruning. While traversing a tree, as soon as we know that a node cannot be larger

than or smaller than a certain value v, we can use this value to compare with its siblings’ value. If the

node in question is in a maximizing layer and is upper-bounded by a value smaller than its siblings’ value,

the node need not be expanded as it should not be chosen by the player in question. This also works other

way round and pruning the game tree in this manner saved lots of time in the end.

Move Ordering. To further facilitate alpha-beta pruning, nodes with the best prospect are placed

in front of those that seemed to be less favorable. This way, if the latter nodes are upper-bounded by a

value smaller than the value of the first node, or the other way round, we do not need to expand the latter

nodes at all. This is done by evaluating to a smaller depth first, then evaluate to the full depth according to

the order found in the first evaluation.

Playing Othello By Deep Learning Neural Network 19

Architecture

In this section, the architecture of the program is being presented. However detailed justifications

and explanations would be left out to be answered in the next few sections.

Raw Data Extraction

To collect training data for our program, we first went to Othello World Cup 2013 (http://www.o-

wc.com/live/) and extracted match record in common human readable format. As the training data size

has later proven to be inadequate, the large amount of data in WZebra is extracted instead.

decoder.py To extract data from the database in WZebra, “.wtb” format files have to be decoded.

While we failed at finding a ready-made program (besides WZebra) that can understand such format, a

website that describes such procedure in detail was found (Computer Reversi, Part 1.5: The Thor

Database: http://ledpup.blogspot.hk/2012/03/computer-reversi-part-15-thor-database.html). We then

proceed to write a snippet that converts it into human readable format and append it to the 150 games

previously collected.

Figure 5. decoder.py in action

Playing Othello By Deep Learning Neural Network 20

RawToStates.py. To train our network, we only need a particular state of a game instead of the

match history. This code reads in, understands and produces a state of game randomly chosen for each

line of match history. It also appends at the end the move chosen by the professional and the final winner

corresponding to the current player. To further facilitate the network training process, the random seed

can also be set before the whole process, which later proves to be extremely useful in network validation.

Neural Network

The four major steps in producing neural networks are modularized to facilitate future expansion and

version control.

Feature Extraction. For feature extraction, the State class in othello.py plays a large part as it

rotates the board according to the first move made by black. This effectively quadruples the sample size

for training our network. The State class also returns a list of viable moves which helps our program in

taking liberty into account. This would be described in further detail in the coming section Neural

Network – Feature Extraction.

Training. This is solely conducted in Trainer.py, where a training set can be read in and cast into

suitable formats (eg. Numpy Arrays) after extracting suitable features. We can then set some hyper-

parameters in a grouped up manner, set the network architecture accordingly and save the models

automatically without fear of overriding existing networks.

Testing. This is solely conducted in Tester.py, where any network can be tested on all the 7 (8 in

the later stages) available data sets. They can also specify the required feature extraction independently so

that all the testing can be conducted in a batch manner. The mean-squared-error (MSE) of each network

on each training set would then be printed out in a neat and tidy manner.

Playing Othello By Deep Learning Neural Network 21

Figure 6. tester.py in action

Prediction. To conduct the final prediction while traversing game tree, evaluator.py provides the

class Evaluator which can be initialized to different feature extraction required by different network. It

would then conduct packaging prior to the native predict function, which allows us to predict the value of

single state efficiently.

Game Rule Enforcement

Like most board games, Othello has its own unique set of rules. For example, a player’s round can be

skipped completely when no move is possible. Also, whether or not a player has possible move depends

on the opponent’s discs as much as it depends on his/hers. This makes game rule enforcement crucial

from early stages of the project.

othello.py The State class in othello.py automatically attempts to find possible moves after each

move and changes the current player if deemed necessary. It also preemptively ends the game when

neither player has a possible move and calculates the number of white and black discs at each round. Its

Playing Othello By Deep Learning Neural Network 22

collection of possible moves at each round became extremely valuable as we trained our network to value

liberty, while the player changing function proved to be crucial when decoding Othello match history

from the web. The last function of calculating black and white discs were particularly useful when

playing to a win in the last few moves.

Core Program

The core program can be divided into 3 main parts, namely artificial intelligence component, graphical

user interface and flow management. The flow management basically acts as judge or the neutral board in

between. Whenever it is time for the computer to make a move, it would urge the AI component to make

a move, and update after necessary validation. After that, it would wait indefinitely before the user makes

a move, which either prompts a reaction from the computer or leads to another endless wait. This

continues until the flow management determines it is time to stop. The other 2 components would be

discussed in detail in Graphical User Interface and Game Tree Expansion respectively.

Playing Othello By Deep Learning Neural Network 23

Neural Network

Neural network, being a core component in this Final Year Project is treated separately since the

early stages and was not merged to observe its influence until later on. It is also hence packed with most

experiments and observations.

Library

From training to prediction, I used the open source library Keras which is both easy to use and powerful.

It can utilize Tensorflow to train networks in a parallel manner using graphics card which sped up the

training progress exponentially. It also allows the users to configure networks in a stack manner, with

minimal input of data at each level and the rest taken care by Keras library.

Feature Extraction

Raw Board Position. At the earliest stage, only raw board data was fed to neural networks with 4

to 6 fully connected layers. As black disc, white disc and empty space do not form an ordinal sequence by

themselves, we separated the board into 3 layers before passing on to our networks.

Figure 7. Feature extraction of raw board position

Playing Othello By Deep Learning Neural Network 24

The result was either overfitting or undesirably high mean-squared error (MSE) of ~0.82. Using

convolutional neural network barely helped and instead we turned our focus to feature extraction.

Border. The first feature that got our attention is the border. At first, using older version of

Keras, I was able to enlarge the size of the grid at each level, effectively preserving the uniqueness of

border from convolution. As this feature was blocked from me later on, I instead pass on an additional

layer (so in total, 4 layers) with 1s at the border and 0s in the center. The resulting MSE was on average

around 0.79.

1 1 1 1 1 1 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1 1 1 1 1 1

Figure 8. Padding layer of border

Rotation. I then utilize the symmetry of Othello and added rotation as a part of feature extraction.

As each state object is created from match history, it would remember the first move played by dark.

Later on, as we pass on the state to train our network, it would always rotate itself before doing so. By

applying rotation, the average MSE dropped to 0.75.

Playing Othello By Deep Learning Neural Network 25

Corner. The next feature that got my attention is corner. Intuitively, corner is very much different

from border and should not be treated in the same manner. Along the same line, the square diagonal to the

corners (X-squares) should not be treated equally as other squares in the center, and the squares touching

the corners (C-squares) should not be seen as equal as other squares in the border. As a result, the layer

passing along raw board becomes modified as follow. After this modification, the MSE drops to as low as

0.73 without significant signs of overfitting. Some networks still only have a MSE of 0.75 and these

became indicators of the suitable number of nodes to be chosen in the dense layers and dropout layers.

Figure 9. Official names for special squares in Othello Figure 10. Padding layer of border and
corner

Liberty. The final feature that I added is liberty. As discussed in the 2 literature reviews, liberty

based evaluation is widely regarded as a superior approach than positional approach alone. As such, this

feature are important for our network if we were to take global integrity into account and rate it properly

alongside greedy local evaluation. Since we were using convolutional neural network, we pass in a matrix

of available moves. The complete input matrix is then being illustrated below.

4 -1 1 1 1 1 -1 4

-1 -1 -1 -1

1 1

1 1

1 1

1 1

-1 -1 -1 -1

4 -1 1 1 1 1 -1 4

Playing Othello By Deep Learning Neural Network 26

Figure 11. Full input matrix when “Corner, Border and Freemode” is chosen as feature extraction

Training and Testing

By setting random seed into different values, we were able to generate 7 sets of data (with the first set

produced by setting seed as 1, second set with its seed as 2, so on). All our 31 neural networks are trained

using the first set with 0.2 of its data reserved as testing data.

Early Stopping. It was soon discovered that our network would train for unproductively long

period of time. Setting the correct epoch became crucial in order for us to sufficiently train our network

while not wasting time that could be used to test more hyper-parameters. Luckily it was soon discovered

that early stopping with a patience of 5 was enough to train a network sufficiently well performing,

especially with an independent validation set.

Hyper-parameter Tuning. Having dealt with early stopping, the epoch basically became a non-

factor and we experimented with different learning rate, momentum, dropout rate and nodes per layer. It

was soon discovered that a slight variation of learning rate from 0.001 and momentum from 0.9 was

devastating. It was then decided that these two hyper-parameters would not be changed in future

experiments.

Playing Othello By Deep Learning Neural Network 27

In comparison, the relationship between dropout rate, nodes per layer and MSE was relatively

unclear. While we learnt that in general, higher dropout rate decreases overfitting at the cost of higher

MSE, and nodes per layer does the exact opposite, there were still considerable exceptions. As a result,

we fall back to testing all combinations.

Testing. Using the data set generated from different seeds, we were able to provide near

independent data set for the purpose of testing. The result was clearly observable with the differences

between the MSE of the 6 testing sets usually in 10-3, while the MSE of the first set differs from the others

in the scale of 10-2.

As we now have a fair judgement for MSE and overfitting, we eventually discovered the best

performing hyper-parameter to be the combination of (Nodes per layer = 512, CNN dropout = 0.3, Dense

layer dropout = 0.3). We then train the network using the entire Data Set 1 and the combination of 7 Data

Sets to observe the difference in performance.

Set	1	 Set	2	 Set	3	 Set	4	 Set	5	 Set	6	 Set	7	 Avg	
(2-6)	

Diff	
with	
Set	1	

0.6966243	 0.7338179	 0.7329133	 0.7338478	 0.7340187	 0.7358826	 0.7329159	 0.7339	 -0.037	
0.675049	 0.7297714	 0.7288691	 0.7302293	 0.7306241	 0.7316783	 0.727873	 0.7298	 -0.055	

0.7146764	 0.7392533	 0.7383323	 0.7387331	 0.7398558	 0.7410367	 0.7377851	 0.7392	 -0.024	
0.7457019	 0.760025	 0.7586022	 0.7592436	 0.7592714	 0.7605961	 0.7591491	 0.7595	 -0.014	
0.6920794	 0.7302734	 0.7289112	 0.730615	 0.7304122	 0.7317721	 0.7280188	 0.7300	 -0.038	

	
Figure 12. MSE results of neural networks using “corner and border” as feature.

Playing Othello By Deep Learning Neural Network 28

Graphical User Interface

To construct our GUI, PyQT has been chosen for its simplicity and crisp response. Different

features are highlighted below and our rationale explained.

Core Functionality

As mentioned in Architecture – Core Program, the flow management, or the integrity of the game is

handled by another module. Hence core functionality in this case has its scope limited within GUI, which

explicitly stands for accepting user input and responding to the degree that permits the progression of a

game.

Mouse Position. To obtain the mouse position, it was as simple as unpacking the mouse position

from MouseMoveEvent, then calculate the relative grid position by dividing it over the width of each

square.

Disc and Grid Representation. To present the state of the current board, our program simply

draws lines that form the grid of the board, and white and black circles which form the discs on the board.

This is refreshed after every move to display the correct state.

Immediate Feedback

In order for our program to have better user experience, it was essential to provide immediate feedback at

every movement done by the user.

 Hover Position. At every MouseMoveEvent, our program sends feedback to the window after

calculating mouse position as a string. Hence whenever the user moves its mouse to a new square, he/she

would notice immediately and ensure that the program is responsive.

Playing Othello By Deep Learning Neural Network 29

Figure 13. As the mouse hovers above (2, 3). A
string would indicate that black is trying to make a
move at (2, 3). Also, the square would be
highlighted green as it is a valid move.

Figure 14. In this case, as the move is invalid, the
square is highlighted red.

Move Validity. To further facilitate the user to determine whether a move is valid, our program

also highlights the hovering square green or red, depending on the validity of placing a disc there. This

aims at helping users make a move faster.

Playing Othello By Deep Learning Neural Network 30

Figure 15. As the player attempts to play a move at (3,
1). A prompt would show saying that it is an invalid
move. The available moves by black would also flash
as a result.

Available Moves. Whenever an invalid move is played by the user, all the squares that are legal

moves would be flashing in green to remind him/her the correct moves. This is another feature devised to

facilitate user experience.

Playing Othello By Deep Learning Neural Network 31

Game Tree Expansion

For our program to utilize an accurate neural network, an effective and fast tree search is essential

to achieve improvement in performance. As such, two core concepts were inherited from the literature

review of Zebra, namely alpha-beta pruning and move ordering.

Core Concept

Alpha-Beta Pruning. The common concept of alpha-beta pruning is still closely adhered to

reduce tree traversal time. As soon as the value of a child node is lower or greater than the value of a

node’s sibling, the expansion would stop at once and continue at its sibling or parent.

Move Ordering. Every time a node is explored, its child node would be ordered according to its

value, with a reversed order if the node is in a maximizing layer, or increasing order if it is a minimizing

layer.

Minimax. The core concept of minimax still holds, however since the evaluation (ie. value

network prediction) can be done in both ways, we have arbitrarily set the evaluation to be conducted in

the computer’s color at every move. This way, the game tree is more or less sandwiched layers of min and

max layers.

Repeating Player. In Othello, it is possible for one player to play multiple moves in a row.

Hence at every calculation, instead of a fixating alternation of min and max layer, we have to check

whether the current player is the original player to determine if we want to minimize or maximize at that

layer.

Playing Othello By Deep Learning Neural Network 32

Implementation

To implement our concept, we added two classes, namely Tree and Node. Tree would be responsible for

reporting to the main program and providing an overview of the status of the game tree, whereas Node

tracks the relationships of nodes with their parents and children.

Tree.

getBestMove. Tree returns the best move when queried by returning the “left-most” children of

the current node (root). As the algorithm should keep the children of all nodes in order, the “left-most”

children would hence always be the best move. If the depth of the current node happens to be less than 4,

our program would then block itself until the tree has been expanded to a depth of 4.

updateMove. Our tree simply overwrites the current node with its appropriate children,

effectively reducing the depth of all nodes by one at the same time.

Node. As the design of the Node class is largely dependent on the design choice of multithreading, most

details would be left for the next section.

Evaluate. All nodes would only access value network evaluation once in its lifetime. Afterwards,

the value is stored in each node’s internal variable and returned whenever queried. This is to reduce the

number of times needed for our program to access the hefty calculation of neural networks.

Playing Othello By Deep Learning Neural Network 33

Multi-threading

To further reduce response time, a method for background expansion of the game tree was

devised. Two requirements were needed for this method to be feasible. Firstly, the process should be done

in a multithreading manner, so that the GUI would remain crisp and responsive throughout the duration.

Secondly, the expansion should be consisted of small steps, so whenever a move is required from the tree,

a response could be given as soon as possible.

Bottom-Up Approach

Looking into minimax with alpha-beta pruning, we see that the usual game tree search can already be

seen from a bottom-up approach. While it is most commonly implemented as a top-down recursive

function, we can easily see that a bottom-up, divide-and-conquer approach should work just as well, as

long as we can locate the correct node to expand afterwards.

Leaf. For a leaf node, it should start by creating all its children nodes. After all its children have

been evaluated, it should be able to calculate the minimum (or maximum) across all children and rank

them in order. Afterwards, it should return its immediate sibling for expansion. If there is no more sibling

to be expanded, it should return its parent which can then calculate the maximum (or minimum) across all

siblings and order them accordingly.

Inner Nodes. For inner nodes, the process should be the same besides the fact that all children

should have been created and evaluated, since our algorithm goes bottom-up. Hence, the progress

becomes simply retrieving the value, finding the minimum (maximum) value and putting the children

nodes into order. It should also then attempt to return the next sibling or parent.

Root. For the root of a fully expanded tree, the next move is of course to increment the search

depth. To accomplish that in our bottom-up approach, the next node should be the left-most leaf node.

Playing Othello By Deep Learning Neural Network 34

Hence, after doing the necessary calculations, that is finding minimum (or maximum) and ordering the

immediate children nodes, our program traverse recursively to reach the left-most leaf node.

Figure 16. Illustration of Alpha-Beta Pruning

Operations Beside Expansion

Things are a little more complicated when we attempt to change the tree structure while another thread is

rapidly expanding it. These scenarios are generally handled in two manners.

Next Node. Finding the next node becomes harder when the tree structure changes from the root

level. Luckily all scenarios turn out to be classifiable into two. Either the nextNode pointer was travelling

in the subtree chosen, or it was travelling elsewhere. If it was travelling elsewhere, then the chosen

subtree is a complete one and hence should expanded from the top (or at the left-most leaf node). If it was

travelling within the chosen subtree, then things would simply work if we continue to do so, as long as we

remembered to discard the reference to the previous state of game (ie. the new root’s parent node).

Playing Othello By Deep Learning Neural Network 35

Lock. To facilitate the access from two different threads – one trying to expand it and the other

trying to reduce depth or determine which is the best move, a lock is obviously needed. However, locks in

Python are not fair, in a sense that the threads that waited longer do not have higher chances of acquiring

the lock than other threads. This makes our program highly unresponsive at times. To combat this

problem, we introduced a global Boolean, which when set to true, makes the expansion thread sleep for

0.3 seconds, sufficiently long enough for either getBestMove or updateMove to acquire the lock and

return responsively.

Pruning

To mimic the effect of alpha-beta pruning, after expanding a child node, it should see if this updates the

parent’s alpha and beta value such that further expansion is unnecessary. If this is the case, in our bottom-

up approach, the node should return its parents, instead of sibling as the next node. This effectively mimic

the early termination of exploring nodes and by letting the parent take control, should terminate the

expansion and pass on the control in a more elegant manner.

Playing Othello By Deep Learning Neural Network 36

Experiments and Results

With the effect of various hyper-parameters on MSE discussed in earlier section Neural Network

– Training and Testing, we would only focus on how various training method results in different

playstyle of our program.

Border Only

While our program was loaded with a network trained only with an extra layer highlighting the border

nodes, it has an apparent liking towards long, straight, diagonal lines. This is perplexing at first but the

reason becomes clearer as we gain understanding in the game of Othello. In early stages where players try

to limit their disc count, a diagonal expansion is usually more favorable as it is along the initial axis, such

that opponent would have a harder time trying to eliminate every disc in subsequent move. A diagonal

expansion is also usually the move to break through after confining one’s disc count, as it opens up the

most choices in available move.

Figure 17, Figure 18. Examples of affection towards diagonal expansion.

Playing Othello By Deep Learning Neural Network 37

Figure 19, Figure 20. Examples of affection towards diagonal expansion.

However, our network fails to acknowledge the importance of corners and always expand into the X-

squares (squares diagonal to corners), resulting in an easy capture of corner by human testers. This can be

regarded a result of CNN’s tolerance towards transposition and magnification, and hence while

professionals keep their diagonal expansion off the main axis and short, our network incorrectly favors

every diagonal expansion alike. This makes our program a very weak player overall.

Playing Othello By Deep Learning Neural Network 38

Border and Corner

When a border and corner network is loaded into our program, its patterns become much less predictable

with a mild avoidance of squares adjacent to corners. However, it is very aggressive towards getting the

early discs on the border and as a result usually opens up a lot of liberty to the opponent.

This play style either rewards our program as it gains a corner and expand its stable discs aggressively, or

punishes it as it loses a corner and all the border discs that were gained earlier became opponent’s stable

disc.

Figure 21. Cases where an aggressive move was
rewarded.

Figure 22. Cases where an aggressive move was
punished.

Playing Othello By Deep Learning Neural Network 39

However, there are also many cases where our program manages to hold the ground even as it loses

corner, sometimes even winning after losing the first two corners. Overall, neural networks trained with

an extra padding layer of border and corners create unpredictable results.

Border, Corner and Freemove

When freemove is passed in as a feature, the first thing noticed is an immediate boost of playing strength.

The program is still being able to value corners and borders from the convolution of the positional layer

and opponent’s freemove layer, but usually values liberty and freedom of movement over simple

positional advantage. Our program has one remarkable feat reported by many testers, which is the ability

to give up corners but limits the human players’ choice of moves significantly, such that little stable discs

was gained from getting that corner and in the end, still manages to snitch a win despite losing first

corner.

Figure 23. Our program winning after losing the
first 2 corners.

Figure 24. Our program holding massive ground in
the middle while all 4 corners are lost.

Playing Othello By Deep Learning Neural Network 40

Figure 25. Black has only 3 liberties as a result of
white’s maneuver.

Figure 26. Black is forced to play into C-square and
X-square after taking the upper left corner.

For example, in the left figure (fig. 25), our program has successfully limits the number of moves black

can make by limiting its own disc count. In this case black only has 3 moves possible, 1 of which would

lead to a loss of control of the upper border, and further reducing its liberty to 1.

The other figure (fig. 26), shows a later stage of the game evolved from the left one. Here we can see that

white has given up the upper right corner but while doing so, limits black’s possible move to 2, both of

which are adjacent to the lower right corner square. We can also see that our program has slipped 2 of its

discs between black’s border, such that it cannot expand its stable disc efficiently. By losing the upper

right corner, our program has gained advantage in liberty, which results in the lead in game and one of the

other corners while limiting black’s gain all at once.

Playing Othello By Deep Learning Neural Network 41

Justification and Explanation

The justification to various choices made for our program and project is provided here.

Why is Othello a suitable game?

Similar to Go and Chess, Othello is a zero-sum, perfect-information, partisan, deterministic strategy

game. This means that it is a game with no win-win situation, no concealed information (and thus no

bluffing), practically equal position for both players and no randomness involved. This type of game is

ideal for computers to play and is thus one of the reason it was chosen to be the topic. Also, unlike Chess

but similar to Go, the values of pieces in Othello are determined only by their positions and there are no

face values unique to each piece. This makes it easier for us to adapt AlphaGo’s algorithm (in particular

CNN) to our program, and also to compare them with each other.

Why is policy network not used?

Unlike Go, Othello has a much smaller degree of freedom at each move. As such, policy network is not as

necessary and was abandoned due to time constraint. Also, the requirement of accuracy of policy network

is much higher when we are not using Monte Carlo Tree Search, as we may accidentally prune off an

entire valid branch if we combine traditional tree search with policy network. We also think that since

Multi-Prob cut would always remain an option if we have an accurate enough value network. Given the

situation, it would hence be better for us to focus on one network only. In the end, the search rate was

satisfactory using Alpha-Beta Pruning alone.

Why is Python being used?

The reason is three folded. First of all, Python has always been used for machine learning. As such, it has

lots of libraries readily available for us to prepare and fine-tune our neural networks. Also, the large

Playing Othello By Deep Learning Neural Network 42

machine learning community allows us to spend less time troubleshooting as there would always be

answers to my queries and fixes to my problems.

Secondly, Python as a language is remarkably simple to code and ideal for prototyping. For example, its

list traversal, dictionary and memory management all allows users to achieve what they want with

minimal coding. It can also be used via interpreter, which allows users to extract variable values at any

time, ideal for doing debugging. These features all make Python the ideal language for a 1-year project.

Lastly, Python has support for both GUI and parallel computing. Thanks to its large number of libraries

available, it can interact with users via PyQT, while also accessing the computation power of graphics

card with Tensorflow. These 2 features are exactly what an AI program playing against human wants.

Why is reinforcement learning not being used?

The main reason is the limitation of time. There are two approaches using which we could generate data

for our networks to learn from. The first one would be playing against humans, but since our network

only started to mature late in March, it was unlikely for us to collect significant number of games such

that the effect of reinforcement learning would be observable and could be studied.

The second approach would be playing games with earlier iterations of itself. Again, this requires us to

reprogram the interface. As we had the more urgent task of fixing the human-computer interface back

then, this idea was also postponed and eventually abolished.

Why are more complicated features not being used?

As mentioned in the literature review, some more complicated features such as pattern and stable discs

were used by human players and the Zebra program. AlphaGo also used features such as Turns since,

Playing Othello By Deep Learning Neural Network 43

Capture size, Self-atari size, Ladder capture, Ladder escape, Sensibleness, etc. These more complicated

features were not used for two reasons. The first and more trivial reason is the limitation of computation

and time resource. Accommodating these features would simply be too much for our program and defeats

the purpose of using a simpler game. The second reason is that this somewhat defeats the purpose of

using neural network. A program targeting a complicated game, such as Go, deserves every help it can get

to overcome the everlasting obstacle in Artificial Intelligence, as the game itself is hardly a solved game.

However, doing the same for Othello would simply be overdoing the matter, since AI programs such as

WZebra has already defeated human professions decades ago.

Playing Othello By Deep Learning Neural Network 44

Conclusion and Future Work

Having created a program that can defeat regular human players, I honestly felt that I have learnt

a lot in the course of this project. Following the footsteps of AlphaGo, I have learnt how to implement the

popular neural networks in the area of AI gaming. I have also understood the principles to a stage where I

could make adjustments to its architecture and adapt it to another game. Venturing off the path, I have

learnt how feature extraction can affect performance and behavioral pattern significantly; I have also

investigated a parallel approach of deterministic tree search, different from the MCTS suggested by

AlphaGo.

Despite all the accomplishments, I experience an even stronger feeling of emptiness for not able

to deliver a perfect program that plays Othello. These regrets are summed up as follow, such that future

work, conducted by others and myself, could be expedited and the torture and tumble of early stages

could be avoided.

Architecture

To better the current architecture, I believe that the game flow control, GUI and AI components should be

separated and communicated using signals. They should run on 3 different threads inherently. This way,

our program can play with other programs with the help of a wrapper, or it could play with earlier

iterations of itself by creating 2 AI components, each loading a different network. This also allows us to

easily code the background expansion of game tree.

Neural Network

For our neural network, I believe that the accuracy can be further improved. While the reasons for not

using more complicated features were provided above, it is still the most promising approach if the goal

for future project is simply to increase winning rate of the program.

Playing Othello By Deep Learning Neural Network 45

Feature Extraction. Stable discs can form another layer that could be fed to our neural network.

Also, the pattern where two discs on the border are separated by one square and two squares should also

be highlighted as they form a zone of vulnerability.

Reinforcement Learning. After each game, the program could fit that particular game by itself

immediately, although this would require us finding the suitable learning rate. It would also be interesting

to observe the effect of training a network specifically to predict the opponent’s move. In theory, this

should allow our program to search to deeper depths and make state predictions more accurate.

Policy Network. Policy network would undoubtedly be a suitable direction of investigation next

time the project is continued or restarted. In theory, it should lead to a deeper and more efficient tree

search.

User Experience

To deliver a better user experience, match history could be displayed at a side panel and a click at it

would bring the user back to that particular state of game. The program should also provide an option for

the user to save the match history down. This would also help us the find the weaknesses of our program.

Tree Traversal

Various tree traversal techniques such as Monte Carlo Tree Search (MCTS) and Multi-Prob cut can be

adopted if this project were to be continued.

Playing Othello By Deep Learning Neural Network 46

References

1. Johnson G. To test a powerful computer, play an ancient game. The New York Times
[Internet]. 1997 Jul 29. [cited 2016 Sep 17]; Technology: [about 5 screens]. Available
from: http://www.nytimes.com/1997/07/29/science/to-test-a-powerful-computer-play-an-
ancient-game.html?_r=0

2. West P. [updated 2016 Sep 07, cited 2016 Oct 26]. Available from:
http://www.bnext.com.tw/ext_rss/view/id/1847944

3. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, Schrittwieser J,
Antonoglou J, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J,
Kalchbrenner N, Sutskever I, Lillibrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis
D. Mastering the game of Go with deep neural networks and tree search. Nature
[Internet]. 2016 [cited 2016 Sep 17]; 529. doi:10.1038/nature16961

4. Jeff B. [updated 2015 Sep 07, cited 2016 Sep 18]. Available from:
https://jeffbradberry.com/posts/2015/09/intro-to-monte-carlo-tree-search/

5. Strategy Guide for Reversi & Reversed Reversi [updated 2011 Jan 04, cited 2017 Apr
16]. Available from: http://www.samsoft.org.uk/reversi/strategy.htm

6. Andersson G. Writing an Othello program [updated 2007 Apr 02, cited 2017 Apr 16].
Available from: http://www.radagast.se/othello

Playing Othello By Deep Learning Neural Network 47

Neural Network Structure

Default Neural Network Structure

Layer (type) Output Shape Param #
conv2d_7 (Conv2D) (None, 32, 8, 8) 1472
dropout_13 (Dropout) (None, 32, 8, 8) 0
conv2d_8 (Conv2D) (None, 32, 8, 32) 2336
dropout_14 (Dropout) (None, 32, 8, 32) 0
conv2d_8 (Conv2D) (None, 32, 8, 32) 9248
flatten_3 (Flatten) (None, 8192) 0
dense_13 (Dense) (None, 512) 4194816
dropout_15 (Dropout) (None, 512) 0
dense_14 (Dense) (None, 512) 262656
dropout_16 (Dropout) (None, 512) 0
dense_15 (Dense) (None, 512) 262656
dropout_17 (Dropout) (None, 512) 0
dense_16 (Dense) (None, 512) 262656
dropout_18 (Dropout) (None, 512) 0
dense_17 (Dense) (None, 64) 32832
dense_18 (Dense) (None, 1) 65
	 	 	
Total params: 5, 028, 727.0
Trianable params: 5, 028, 727.0
Non-trainable params: 0.0

Note1: All layers have the following parameters {W_constraint = maxnorm (2); activation = ‘relu’;
border_mode = “same”} whenever applicable.

Playing Othello By Deep Learning Neural Network 48

Table 1

Performance of Neural Networks (with identical dense layer and CNN dropout rate)

Network

Nodes
Per
Layer

Dropout
Rate

Feature Independ
ent
Testing
MSE

MSE on
Training
Set

Diff.

/ 512 0.3 Border 0.7427 0.7058 -0.037
1 1024 0.3 Border 0.7312 0.6624 -0.069
2 1024 0.4 Border 0.7331 0.6886 -0.044
3 1024 0.5 Border 1.0817 1.0802 -0.002
4 512 0.4 Border 0.7576 0.7496 -0.008
5 512 0.3 Corner and Border 0.7339 0.6966 -0.037
6 1024 0.3 Corner and Border 0.7298 0.6750 -0.055
7 1024 0.4 Corner and Border 0.7392 0.7147 -0.024
8 1024 0.5 Corner and Border 0.7595 0.7457 -0.014
9 512 0.4 Corner and Border 0.7300 0.6921 -0.038
10 1024 0.4 Freemove, Corner and Border 0.7230 0.6394 -0.084
11 1024 0.3 Freemove, Corner and Border 0.7207 0.6666 -0.054
12 1024 0.5 Freemove, Corner and Border 0.9178 0.9094 -0.008

13 512 0.3
Freemove, Corner and
Border 0.7191 0.6542 -0.065

14 512 0.4 Freemove, Corner and Border 0.7393 0.7262 -0.013

Note1: All the above networks are trained with the following values in unspecified hyper-parameters.
{Max_Epoch = 500; Learning Rate = 0.001; Momentum = 0.9; Decay = Learning Rate / Max Epoch; Batch
Size = 5}

Note2: Independent testing MSE refers to the average MSE from testing on data sets generated using
different random seeds (2 – 7). MSE on training set refers to the MSE calculated when testing on training set,
validation set and testing set as a whole, usually this is Train_1 unless specified otherwise. Diff. refers to the
difference in the previous two values, usually taken as an indicator of overfitting.

Note3: Best performing (taking average MSE, overfitting index and game performance into consideration)
neural networks are bolded.

Playing Othello By Deep Learning Neural Network 49

Table 2

Performance of Neural Networks (with different dense layer and CNN dropout rate, using
freemove, corner and border as feature selection)

Network # Nodes Per

Layer
CNN
Dropout
Rate

Dense
Layer
Dropout
Rate

Independ
ent
Testing
MSE

MSE on
Training Set

Diff.

15 1024 / 0.4 0.7525 0.6874 -0.065
16 1024 0.3 0.4 0.7231 0.6907 -0.032
17 1024 0.3 0.5 0.7383 0.7254 -0.013
18 1024 0.4 0.3 0.7318 0.7149 -0.017
19 1024 0.4 0.5 0.7430 0.7339 -0.009
20 1024 0.5 0.3 0.8176 0.8116 -0.006
21 1024 0.5 0.4 0.7643 0.7567 -0.008
22 512 0.3 0.4 0.7278 0.6723 -0.056
23 512 0.4 0.3 0.7549 0.7425 -0.012
24 512 / 0.3 0.7719 0.6125 -0.159
25 512 / 0.4 0.7624 0.6068 -0.156

Note1: All notes in Table1 apply.

Note2: All variations have lower or similar performance compared with network13 and network12 and hence
it was decided that in this particular case, asymmetric dropout rates have no positive effect on decreasing
MSE.

Playing Othello By Deep Learning Neural Network 50

Table 3

Performance of variations of network 13 (with different number of CNN and Dense layers)

Network # # of CNN
layers

of Dense
Layers

Independent
Testing MSE

MSE on
Training Set

Diff.

26 3 4 0.7202 0.6904 -0.030
27 2 5 0.7237 0.6654 -0.058
28 3 5 0.7238 0.6962 -0.028
29 1 4 0.7356 0.6256 -0.110
30 2 3 0.7309 0.6752 -0.056
31 1 3 0.7379 0.6007 -0.137

Note1: All notes in Table1 apply.

Note2: All variations have lower or similar performance than network13 and hence it was decided that in this
particular case, adjusting the number of layers have no positive effect on decreasing MSE.

Playing Othello By Deep Learning Neural Network 51

Table 4

Performance of variations of network 13 (using the entirety of Training Set)

Network Name Nodes Per Layer Average
MSE
From
Testing
Set

Average
MSE
From
Training
Set

Difference

final_network1 Used entire set 1 to train 0.7246 0.6916 -0.033
final_network2 Use training set 1 to 7 to train 0.6608 0.5330 -0.128
final_network3 Set corner value to 10 instead of 4 0.7181 0.6453 -0.073

Note1: All notes in Table1 apply. Also, all networks are trained with “Freemove, Corner and Border” as
feature selection.

Note2: All variations either have lower performance in terms of MSE or suffer from serious overfitting. This
was also later confirmed when loaded into our program to observer their actual performance in game.

